
Explanation and comparison of deep learning models and

improvement approaches used in Reinforcement Learning.

Denisz Mihajlov
HAW, Hamburg

Denisz.Mihajlov@haw-hamburg.de

March 6, 2022

Abstract

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent
agents ought to take actions in an environment in order to maximize the notion of cumulative
reward. The purpose of reinforcement learning is for the agent to learn an optimal, or nearly-
optimal, policy that maximizes the ”reward function” or other user-provided reinforcement signal
that accumulates from the immediate rewards. In this area are existing a lot of algorithms that
can be used for different types of tasks from playing computer games till autonomous driving and
robotics. This paper describes and compares some of these methods to give more understanding
about them and to show if the combination of them can make learning processes more successful.
All comparisons between different methods were done based on real tests that show how the agents
are developing themselves during the learning process.

1 Introduction

Reinforcement Learning (RL) is the science of decision-making. It is about learning the optimal
behaviour in an environment to obtain maximum reward. This optimal behaviour is learned through
interactions with the environment and observations of how it responds, similar to children exploring the
world around them and learning the actions that help them achieve a goal. The Reinforcement Learning
problem involves an agent exploring an unknown environment to gain a maximum reward. RL is based
on the hypothesis that all goals can be described by the maximization of expected cumulative reward.
It exists a big amount of algorithms and network architectures that can be used in Reinforcement
Learning. These approaches can be used to successfully train an agent to perform some actions.
For example, they are being used to create agents that can play games automatically and reach scores
bigger than a human can do. In the beginning of the process the results may not fulfil the expectations,
but with the time an agent can optimise his behaviour himself, according to the rewards that he gets,
and perform better till the maximum reward is reached. But all methods may deliver different results
by solving different tasks with reinforcement learning. These results may reach maximal reward, or
they can be insufficient, and an agent will not be able to solve the task even after learning. This paper
is giving more information about existing algorithms and methods that can be used to solve tasks with
Reinforcement Learning approach. The paper is giving a better understanding of presented methods
and also tells about the performance of learning that can be achieved using the described methods.

This paper presents a comparison of some deep learning models with different mechanisms, that helps
to improve the learning process and add to it more performance and stability. Also, it gives an overview
of how these approaches are working and shows for what reasons these approaches are useful. It shows
which combination of deep learning architecture and mechanism can deliver better result during the

1



learning process. Two different architectures: Double Deep Q-Learning and Dueling Double Deep
Q-Learning were chosen to be compared and presented in this paper. Additionally, mechanisms like
Experienced Replay, Prioritised Experience Replay and adding of noisy layers were used to research
how they affect the performance and stability of learning. Furthermore, one more deep learning model,
named Deep Q Learning, will be presented. This model is presented only to give further understanding
of the other two models. Tests with this model will not be presented in the evaluation part of the
paper. Two different environments were taken to perform tests and to compare results between different
approaches. One of the environments is an Atari game named Pong. This environment is giving images
as input to the networks, and they use information in these images to perform action that can lead to
increasing of the score. The second environment is CartPole. This environment is different from the
first one and gives raw data instead of images as an input to the networks, the actions will be then
performed after analysing of this data.

In the next chapter, the theoretical basics of all deep models and mechanisms that were used in this
paper will be presented, along with the advantages and features of these mechanisms. It serves also to
give a common understanding of the methods that were presented in this paper. The chapter 3 gives
more information about used environments and explains which hyperparameters were used to perform
tests. It also tells for what reason these parameters are used. The chapter 4 shows the results of the
performed tests and compares them between each other to find out which architecture and combination
of mechanisms is the best for given environments. All results of the learning process were visualised
in the graphs. The chapter 5 gives a short conclusion where all observations were put together and
discussed.

2 Theoretical basics

All used algorithms and improvement features are explained in this section. It starts with a basic
Q-Learning Algorithm and an explanation of the improvement technics like Experienced Replay and
Prioritized Experience Replay (PER). Next parts of this section are about three different variants of
Q-Learning Algorithm usage.

2.1 Q-Learning

It is considered a task in which an agent interacts with an environment ", At each time-step the agent
selects an action at from the set of legal game actions, A = 1; :::;K. The action is passed to the
emulator and modifies its internal state and the score. An emulator is used for training and evaluation
to simulate the environment in which the agent will be trained. The agent observes the environment
after each action and may get a reward rt depending on the state, where it will land after taking an
action.

Since it is impossible to fully understand the situation every time after each step, the sequences of
observations will be created st = x1; a1;x2; a2;xt; at where xt is agent’s current observation and at is
an action that was made. Strategies to solve problems will be learned upon these sequences.

All sequences in the emulator are assumed to terminate in a finite number of time-steps. This formalism
gives rise to a large but finite Markov Decision Process (MDP) in which each sequence is a distinct
state. As a result, standard reinforcement learning methods for MDPs can be applied, simply by using
the complete sequence st as the state representation at time t [1].

The goal of the agent is to interact with the emulator by selecting actions in a way that maximizes
future rewards. The future rewards are discounted by a factor of  per time-step, and they define the

2



future discounted return at time t as:

Rt =

TX
t′=t

= t
′�t � rt′ (1)

where T is the time-step in which the environment reaches terminate state. The optimal action-value
function can be defined Q�(s; a) as the maximum expected return achievable by following any strategy,
after seeing some sequences and then taking some action a:

Q�(s; a) = max�E[Rtjst = s; at = a; �] (2)

where � is a policy mapping sequences to actions. The optimal action-value function obeys an impor-
tant identity known as the Bellman equation. This is based on the following intuition: if the optimal
value Q�(s0; a0) of the sequence s0 at the next time-step was known for all possible actions a0, then the
optimal strategy is to select the action a0 maximizing the expected value of r +  �Q�(s0; a0)

Q�(s; a) = Es′��[r +  �max
a′

Q(s0; a0)js; a] (3)

The idea behind many reinforcement learning algorithms is to estimate the action-value function, by
using the Bellman equation as an iterative update. Such value iteration algorithms converge to the
optimal action-value function [2]. In practice, this basic approach is totally impractical, because the
action-value function is estimated separately for each sequence, without any generalization. Instead,
it is common to use a function approximator to estimate the action-value function. Mostly the linear
function approximator will be used, but it is possible also to use the non-linear approximator instead.
For example, a neuronal network. The network with weights Θ in case of Q-Learning is called Q-
Network.

A Q-network can be trained by minimising a sequence of loss functions Li(Θi) that changes at each
iteration i,

Li(Θi) = Es;a��(:)[(yi �Q(s; a; Θi))
2] (4)

where yi = Es′��[r +  �maxa′Q(s0; a0; Θi�1)js; a] is the target for iteration i and �(s; a) is a proba-
bility distribution over sequences s and actions a that we refer to as the behaviour distribution. The
parameters from the previous iteration Θi�1 are held fixed when optimising the loss function Li(Θi).
Note that the targets depend on the network weights; this is in contrast with the targets used for
supervised learning, which are fixed before the learning begins.

If the weights are updated after every time-step, and the expectations are replaced by single samples
from the behaviour distribution � and the emulator E respectively, then we arrive at the Q-learning
algorithm [3]. Note that this algorithm is model-free: it solves the reinforcement learning task directly
using samples from the emulator ", without explicitly constructing an estimate of ". It is also off-policy:
it learns about the greedy strategy a = maxaQ(s; a; Θ), while following a behaviour distribution that
ensures adequate exploration of the state space. In practice, the behaviour distribution is often selected
by an �-greedy strategy that follows the greedy strategy with the probability 1 - � and selects a random
action with probability � [1].

2.1.1 Experience Replay

Experienced Replay is a technic that is used to improve a stability of learning for Reinforcement
Learning Algorithms. Within this technic, the learning agent remembers its experiences and repeatedly
presents them to its learning algorithm as if the agent experienced again and again what it did earlier.
It provides the following improvement points:

1. the process of propagation is sped up

3



2. an agent would get a chance to refresh what it has learned before

During the network training, if an input pattern has not been presented for quite a while, the network
typically will forget what it has learned for that pattern and thus need to re-learn it when that
pattern is seen again later. This problem is called the re-learning problem. Experienced Replay
is useful to overcome exactly this situation, where the agent forgot about its previous experience
[4]. To implement this kind of improvement, it is needed to store the agent’s experience at each
time-step, et = (st; at; rt; st+1)in a dataset D = e1; :::; eN , pooled over many episodes into a replay
memory. During an inner loop of the algorithm, the Q-learning updates will be applied, drawn at
random from the pool of stored samples. After the experience replay, the agent selects and executes
an action according to the �-greedy policy. Since the usage of histories of huge length as inputs to
a neural network can be difficult, Q-function can work with fixed length representation of histories.
For example, an algorithm can do the Q-learning updates with mini batches taken randomly from the
whole learning history.

2.1.2 Prioritized Experience Replay

Another way to improve the learning performance of the RL Algorithm that is based on saving expe-
rience is a Prioritized Experience Replay or PER [5]. Prioritizing of experience can make the replay
more efficient and effective compared to the case when all transitions are replayed uniformly. The
key idea is that an RL agent can learn more effectively from some transitions than from the others.
Transitions may be more or less surprising, redundant, or task-relevant. Some transitions may not
be immediately useful to the agent, but might become so, when the agent competence increases [6].
Experience replay liberates online learning agents from processing transitions in the exact order they
are experienced. Prioritized replay further liberates agents from considering transitions with the same
frequency that they experienced. In this approach, the transitions with high expected learning progress
will be replayed more frequently. It will be measured by the magnitude of temporal-difference (TD)
error.

The central component of prioritized replay is the criterion by which the importance of each transition
is measured. One idealized criterion would be the amount the RL agent can learn from a transition
in its current state (expected learning progress). While this measure is not directly accessible, a
reasonable proxy is the magnitude of a transition’s TD error �, which indicates how ‘surprising’ or
unexpected the transition is. This is particularly suitable for incremental, online RL algorithms, such
as Q-learning, that already compute the TD-error and update the parameters in proportion to �. The
value of � will be updated for every sample from the Replay Memory that was returned from the
minibatch. So it is not necessary to update � values for all samples to achieve the successful learning.
The probability of sampling transition i can be computed with this equation:

P (i) =
p�iP
k p

(5)

where pi > 0 is a priority of transition i. The exponent � means the importance of prioritization, if �
= 0 then prioritization is not applied and the uniform case will be used. The term pi can be computed
in two different ways. The first way is directly with pi = j�ij + �, where � is a positive constant that
prevents, that a transition is not being revisited once its error is zero. The second variant of computing
pi is the rank-based prioritization, where pi =

1
rank(i) where rank(i) is the rank of transition i when

the replay memory is sorted according to j�ij.

Prioritized replay introduces bias, because it changes the distribution in an uncontrolled manner,
and therefore changes the solution that the estimates will converge to (even if the policy and state

4



distribution are fixed). This bias can be corrected by using importance-sampling (IS) weights [5].

wi = (
1

N
� 1

P (i)
)� (6)

where N is a size of the replay buffer, and � is an exponent that corrects the bias. If � = 1 then the
bias will be fully compensated for not-uniform probability P (i). During the learning process, the value
of � should be annealed from the initial point to the value of 1. The value of wi will be folded into
the Q-learning update by using wi�i instead of �i

2.2 Image Preprocessing

For the experiments with Atari Game “Pong” gym environment “PongNoFrameSkip-v4” will be used.
This environment has images as data that will be used for training. Before the images can be fed to
the network, a small preprocessing is required.

Working directly with raw Atari frames, which are 210 × 160 pixel images with a 128 colour palette,
can be computationally demanding, so we apply a basic preprocessing step aimed at reducing the
input dimensionality. The raw frames are preprocessed by first converting their RGB representation
to gray-scale and down-sampling it to a 110×84 image. The final input representation is obtained by
cropping an 84 × 84 region of the image that roughly captures the playing area. To increase learning
speed and stability, the input to the Q-function will be created with preprocessing of the last four
frames of a history and stacking them together.

2.3 DQN

Now, the architecture that is used for training of an agent with Pong environment will be described.
The input to the neural network consists of an 84 × 84 × 4 image produced after preprocessing.
The next convolutional layer convolves 32 8 × 8 filters with stride 4 with the input image. The last
convolutional layer convolves 64 4 × 4 filters with stride 1. Each of these layers is created with ReLu
as activation function. The first fully-connected layer takes as input channels from the convolutional
layers and returns 512 features. This layer also has an activation function ReLu. The output layer is
a fully connected linear layer with a single output for each valid action.

For the training with this approach two networks with the same architecture will be created, one is
a local network that will be used during training for computation and a target network. The target
network will be the result network in the end of training. So it means that during the training, all
weights from local network will be copied to the target network from time to time. The periodicity of
this update can be set by hyperparameters. The term to update a Q-Value for a target network in the
DQN approach looks as follows:

Q(s; a) Q(s; a) + lr � [rt+1 +  �max
a

Q(st+1; a)�Q(st; at)] (7)

where lr is a learning rate set wit hyperparameters and t is a time frame. Here are listed the steps
involved in a deep Q-network (DQN)[7]:

1. Preprocess and feed the game screen (state s) to DQN, which will return the Q-values of all
possible actions in the state.

2. Select an action using the epsilon-greedy policy. With the probability epsilon, we select a random
action a and with probability 1-epsilon, we select an action that has a maximum Q-value, such
as a = argmax(Q(s,a,w)).

5



3. Perform this action in a state s and move to a new state s0 to receive a reward. This state s0

is the preprocessed image of the next game screen. This transition will be stored in the replay
buffer.

4. Sample some random batches of transitions from the replay buffer and calculate the loss: the
squared difference between target Q and local Q.

5. Perform gradient descent with respect to actual network parameters in order to minimize this
loss.

6. After every C iterations, copy actual network weights to the target network weights.

7. Repeat these steps for M number of episodes.

2.4 Double DQN

The second learning approach that was used to train an agent is Double DQN [8]. This approach is
very similar to the DQN approach that was described above, but there is one difference that makes
this approach more stable for the learning process. The max operator, in the standard Q-Learning
and DQN, uses the same values both to select and to evaluate an action. This makes it more likely to
select overestimated values, resulting in overoptimistic value estimates. To prevent this, the selection
and evaluation of the value can be decoupled. It means that the difference between DQN and DDQN
is a computation of Q-Value. Since this approach also uses two networks with the same architecture,
both of them will be used to update a Q-Value in DDQN. The term to update Q-Value in DDQN
looks as follows:

Q(s; a) Q(s; a) + lr � [rt+1 +  �max
a

Q0(st+1; a)�Q(st; at)] (8)

where maxaQ
0(st+1; a) is an action with the highest Q Value computed in the local network. The

process of learning with DDQN is the same as the process that was described for DQN. The Q-Value
update is the only difference. Only with this small change, DDQN improves over DQN both in terms
of value accuracy and in terms of policy quality. Double DQN helps us to reduce the overestimation
of q values and, as a consequence, helps us to train faster and to have more stable learning. It will be
shown in the graphs in the evaluation chapter. The architecture of Double Deep Q Learning model is
the same as was presented in the previous chapter for DQN.

2.5 Dueling DQN

This variant of Reinforcement Learning requires changes not only in the computation of Q-Value
functions, but also changes in the architecture of the neuronal network. This approach is called
Dueling DQN [9]. Since Q-Values correspond to how good it is to be at that state and taking an action
at that state (Q(s,a)), this term can be decomposed as the sum of:

1. V(s): the value of being at that state

2. A(s,a) the advantage of taking that action at that state (how much better is it to take this action
versus all other possible actions at that state).

Dueling DQN is needed to separate the estimator of these two elements using new streams: one that
estimates the state value V(s) and the other one that estimates the advantage for each action A(s,a). In
the architecture, the last fully-connected layer will be divided into two streams to estimate state-value
and the advantages for each action.

6



Figure 1: Dueling DQN architecture

After changes in architecture parameters of separated layers can be donated with � and �. The
parameters of convolutional layers are donated as �. With this knowledge, the Q-Value for Dueling
DQN is defined as:

Q(s; a; �; �; �) = V (s; �; �) +A(s; a; �; �) (9)

This equation is unidentifiable in the sense that given Q we cannot recover V and A uniquely. To
see this, add a constant to V (s; �; �) and subtract the same constant from A(s; a; �; �). This constant
cancels out resulting in the same Q value. This lack of identifiability is mirrored by poor practical
performance when this equation is used directly. To overcome this problem, the other approach of
Q-Value computation can be used. This approach computes Q-Value using the mean of all estimated
values of the advantage function:

Q(s; a; �; �; �) = V (s; �; �) + (A(s; a; �; �)� 1

jAj
X
a

0A(s; a0; �; �) (10)

On the one hand it loses the original semantics of V and A because they are now off-target by a
constant, but on the other hand it increases the stability of the optimization: with (10) the advantages
only need to change as fast as the mean, instead of having to compensate any change to the optimal
action’s advantage. By decoupling the estimation, the network can learn which states are (or are not)
valuable without having to learn the effect of each action at each state (since it’s also calculating
V(s)). This architecture helps to accelerate the training. It can calculate the value of a state without
calculating the Q(s; a) for each action at that state. And it can help to find much more reliable Q
values for each action by decoupling the estimation between two streams [10].

2.6 Architecture with noisy weights

In this approach the Q-Values calculations will remain the same for each architecture as introduced in
the previous sections, this approach uses Noisy neuronal network parameters to create an architecture
and train an agent. The name of created architectures are NoisyNets [11]. NoisyNets are neural net-
works whose weights and biases are perturbed by a parametric function of the noise. These parameters
are adapted with gradient descent. Noisy parameters can be defined as follows:

�
def
=== �+Σ� � (11)

where �
def
=== (�;Σ) is a set of vectors of learnable parameters, � is a vector of zero-mean noise and �

represents element-wise multiplication. Optimisation now occurs with respect to the set of parameters
�.

A noisy network agent samples a new set of parameters after every step of optimisation. Between
optimisation steps, the agent acts according to a fixed set of parameters (weights and biases). This

7



ensures that the agent always acts according to parameters that are drawn from the current noise
distribution. After applying of these noisy layers to DQN or Dueling DQN �-greedy exploration will not
be used any more, instead the policy greedily optimises the action-value function. Secondly, the fully
connected layers of the value network are parameterised as a noisy network, where the parameters are
drawn from the noisy network parameter distribution after every replay step. Since DQN and Dueling
take one step of optimisation for every action step, the noisy network parameters are re-sampled before
every action. When replacing the linear layers by noisy layers in the network (respectively in the target
network), the parameterised action-value function Q(x; a; �; �) (respectively Q(x; a; �0; �)) can be seen
as a random variable and the DQN loss becomes the NoisyNet-DQN loss.

L(�) = E[E(s;a;r;y)�D[r + max
b2A

Q(y; b; �0; ��)�Q(x; a; �; �)]2] (12)

where the outer expectation is with respect to the distribution of the noise variables � for the noisy
value function Q(x; a; �; �) and the noise variable �0 for the noisy target value function Q(y; b; �0; ��)
[11]. The loss function for Dueling DQN will look as follows:

L(�) = E[E(s;a;r;y)�D[r +  � argmax
b2A

Q(y; b�(y); �0; ��)�Q(x; a; �; �)]2] (13)

b�(y) = argmax
b2A

Q(y; b(y); �00; �) (14)

At a high level, this algorithm is a randomised value function, where the functional form is a neural
network. Randomised value functions provide the provably efficient means of exploration [12]. Al-
though the improvements in performance might also come from the optimisation aspect since the cost
functions are modified, the uncertainty in the parameters of the networks introduced by NoisyNet is
the only exploration mechanism of the method. Having weights with greater uncertainty introduces
more variability into the decisions made by the policy, which has the potential for exploratory actions.

3 Test and environment creation

In this section, all made tests and used environments will be described. The test was done for each
of the described architectures with Experienced Replay. Also, the tests were done for the same archi-
tectures, but with using of PER or Noisy Layers. The implementation of the architectures and other
mechanisms that were used for the tests can be found here [13]. The tests were done in the ICC Server
of HAW Hamburg, the learning was done with CUDA 11.2 and GPU NVIDIA V100 16GB HBMS. The
architectures were tested with two different environments. Both of them were taken from the frame-
work gym [14]. Gym is a toolkit for developing and comparing reinforcement learning algorithms. It
supports teaching agents everything from walking to playing games. Two environments were taken
for tests. The first environment is using images as input data, and simulates an Atari game Pong.
Pong is a table tennis–themed arcade sports video game, featuring simple two-dimensional graphics.
The game is going until one of the participants reaches a score of 21 points, which is a goal for an
agent that will be trained. Different version of this environment are existing, the one that was used
for the tests is PongNoFrameskip-v4. The second environment simulates a CartPole [15]. A pole
is attached by an unactuated joint to a cart, which moves along a frictionless track. The system is
controlled by applying a force of +1 or -1 to the cart. The pendulum starts upright, and the goal is to
prevent it from falling over. One more difference of these two environments is that Pong is a game and
works based on game frames. These frames will be sent as images to the input layer of the neuronal
networks. CartPole is working based on raw data, that contains useful information, that shows how
the environment reacts on the done actions. In this case, raw data will be set as input of networks.
The neuronal networks for Pong environment will contain convolutional layers to process given images
and for CartPole these convolutional layers are not needed, so for this environment only danse layers
will be used.

8



The test was done with the same hyperparameters for each environment. In total, there were six
parameters to set. For Pong environment, the following parameters were chosen. Number of processed
frames was set to 1,000,000. This is a number of frames that will be analysed during a training process.
The size of replayed memory will be set to 10,000, it shows an amount of results that will be saved
to replay buffer and used for Experienced Replay and PER. Learning rate will be set to 0.0001. For
�-greedy process will be started with 1 and annealed to minimum of 0.01. The last parameter shows for
how many frames the replay buffer will be filled based on a random policy, before agent-env-interaction.
That means for this amount of frames, the agent will not actually learn from the environment. For
all tests with Pong environment, this value is 10,000. Multiple tests were done for both environments.
The tests do not have same results, different seeds will be used. Seed is also one of the parameters that
will be set for the training. Tests with different seeds will show more and better observations how the
agent will learn and solve given problems. Training an agent for Pong environment takes a lot of time
until 1,000,000 frames are processed. For this reason, first a model was successfully trained and tests
were done with using of transfer learning approach that made tests complete 10-20 % quicker than a
fully new training takes. All parameters in convolutional layers were frozen and remaining dense layers
were reset. With this configuration, the model will change parameters only for dense layers and will
not do calculation in terms of feature detection in convolutional layers. CartPole environment does
not need images to be processed during the training. This environment does not use any convolutional
layers, and here none of the parameters needs to be frozen. The parameters that were used for tests
with CartPole will be presented later.

4 Evaluation

In this section, the results of the tests will be shown. The architectures will be compared in terms
of reached average goals, computation time and learning effectiveness. The first six chapters present
results for Pong environment, from the Chapter 4.7 tests with CartPole environment will be described.

4.1 DDQN with Pong environment

Figure 2: Rewards during learning for five
tests

Figure 3: Average result during the learning
process

Figure 4: Results for Pong with DDQN

In the graph 4 are shown the results of the learning with DDQN agent and Experienced Replay
buffer. Two graphs represent different data with five tests. All tests were done with different seeds
from 1 to 5. Different tests are represented with different colour in the graphs. The left graph is
showing the rewards that the agent got during the training for each frame. The right graph shows

9



an average of these rewards for the made steps. The learning process took 251 minutes in average.
The average score that the agent received during all tests is 19.50. In the early phase of learning, the
scores are not improving very well. It can be caused by not enough experience that agent has in these
steps of learning. After 70-80 steps, the agent gets a big improvement in terms of actual scores and
average results. The improvement can be caused by experience replay mechanism that was used as an
optimisation possibility. Since the agent reuses earlier experiences, it can choose better action and this
improves its performance. And after almost 100 steps agent reaches the point of maximal reward of
21 and in average holds rewards between 18-21 till the end of the learning. In the graph 2 the decrease
of the score for some frames in tests with seed 2 and 4 can be recognised. It can be caused by small
“blackouts” that an agent can get during the training processes. Since Experienced Replay buffer was
used, it happened only twice during the training, only in two tests, and it didn’t have a lot of influence
on the average scores and the training itself. It was the first architecture that was tested, in the next
section this architecture will be compared with other architectures to find the best one among them.

4.2 Dueling DQN with Pong Environment

In this section, the results of Dueling DQN with Pong environment will be shown. Same as DDQN
network, five tests with different seeds from 1 to 5 will be done.

Figure 5: Rewards for Dueling DQN during
learning for five tests

Figure 6: Average rewards for Dueling DQN
result during learning process

Figure 7: Results for Pong with Dueling DQN

In the graphs 7 the average and actual reward results for the Dueling DQN architecture are shown.
The results are shown after completing of five tests with different seeds from 1 to 5. Same as in the
previous tests, the agent was successfully trained to play Pong Atari game. But the average score in
this training got to the point of 20.2. It is 5% bigger than the agent that was trained with DDQN
approach. Dueling DQN shows not massive improvement in the average score, but on the graphs it
can be seen that the maximum point will be reached quicker than by DDQN. Since all tests were done
with fixed hyperparameters, every time 1,000,000 frames were processed before the learning is done.
Dueling DQN needed 390 minutes in average to reach this point. It is 140 minutes longer than for
DDQN, but due to faster convergence of Dueling DQN Algorithm, fewer frames can be processed to
reach the needed score. It can be recognised that also this architecture gets some “blackouts” during
the training with experience replay buffer. According to the graph 5 it happened two times and only
in one of the five tests. Even with these blackouts, Dueling DQN shows a more stable learning process
compared to the DDQN approach. The graphs, where average scores of DDQN and Dueling DQN are
compared, can be found in the figure 8.

10



Figure 8: Comparison between DDQN and DQN. DQN red line; DDQN green line

From this graph, it can be seen that DDQN shows slightly faster convergence to the maximum point
than DQN. The advantage of the Dueling architecture lies partly in its ability to learn the state-value
function efficiently. With every update of the Q values in the Dueling architecture, the value stream V
is updated – it contrasts with the updates in a single-stream architecture (DDQN) where only the value
for one of the actions is updated, the values for all other actions remain untouched. This more frequent
updating of the value stream in this approach allocates more resources to V, and thus allows for better
approximation of the state values, which in turn need to be accurate for temporal-difference-based
methods like Q-learning to work. Since an action space of Pong environment is small compared to
some other Atari games, the improvement in these tests is only 5%. The importance of this approach
is growing for environments with a complex environment and bigger action space.

4.3 DDQN with noisy weights with Pong Environment

This section presents results for agents that were learned with DDQN with noisy weights. They are
presented in the graph 11:

Figure 9: Rewards for noisy DDQN during
learning for five tests

Figure 10: Average rewards for noisy DDQN
result during learning process

Figure 11: Results for Pong with noisy DDQN

11



In average this approach is getting a reward of 20.5 that is almost same as Dueling DQN is getting and
is better than normal DQN approach. Noisy layer architecture has a difference in the actual reward
graph 9. It is noticeable that the agent is converting to the good results almost in the beginning
of training process. Since this approach is using noisy weights that will be adjusted all the time
during the training, it seems to be unstable from time to time and has more “blackouts” during the
training. Even this instability is not effecting the end result in average and the agent can be also
trained successfully. The improvements in performance might also come from the optimisation aspect
since the cost functions are modified, the uncertainty in the parameters of the networks introduced by
NoisyNet is the only exploration mechanism of the method. Having weights with greater uncertainty
introduces more variability into the decisions made by the policy, which has potential for exploratory
actions. In case of Pong, these improvements are not giving any big advantage compared to Dueling
DQN. NoisyNet has faster processing of frames because in average this approach takes only 300 minutes
to be done with training. It happens because this architecture does not split the last layer, as it is
done with Dueling DQN. That is why the value function will get updated only for the action that was
taken, same as in the normal DDQN approach. It requires less time of processing a single frame. Same
as for Dueling DQN this approach can show more improvements with more complicated environments
with bigger action spaces.

4.4 DDQN with Pong environment and PER

In this section, the agent will be trained with Double DQN architecture with Prioritized Experience
Replay buffer (PER). It will be investigated if PER gives some improvements to the learning process
compared to basic experience replay.

Figure 12: Rewards for DDQN with PER dur-
ing learning for five tests

Figure 13: Average rewards for DDQN with
PER result during learning process

Figure 14: Results for Pong with DDQN and PER

This approach also ended with successfully reached goal of getting 21 points. In average, an agent
trained with DDQN and PER gets a score of 20.2 out of 21 (see graph 13). From the graph 12 can be
recognised that some “blackouts” still happened even with using of PER mechanism, but all of them
are not going to negative values of the possible score. It can be explained with a careful choice of
experience that will be gathered during the training. Since these experience samples from the buffer
are now prioritised, the agent takes the most valuable ones to use in the certain point of the training
and minimises a possibility to gain negative rewards. Due to needed computation of priorities this
approach needs in average 275 minutes to be completed for 1,000,000 frames.

The graph 17 shows a comparison between DDQN with Experienced Replay and DDQN with PER.

12



For reasons of clarity, the figures show only one test for each approach.

Figure 15: Rewards for DDQN with PER vs
Experienced Replay during learning

Figure 16: Average results for DDQN PER vs
Experienced Replay

Figure 17: DDQN PER vs Experienced Replay for Pong environment

The training in average score with PER had slightly small improvements compared to the Experienced
Replay approach. Since Pong environment has a finite score of 21, as soon as agent gains this score,
the average between PER and Experienced Replay approach will be normalised. More can be seen
in the graph 15 where one “blackout” happened. It shows that the score by the “blackout” with
PER approach is not going to the negative area, but Experienced Replay approach got in this case
a minimum score of -21. Both of these graphs show how PER improves learning compared to the
Experienced Replay approach. One more thing that will be also improved by PER is a loss function,
the graph 18 shows the loss during the learning process with PER and the graph 19 shows the loss
with basic Experienced Replay. It shows that PER approach gives an agent more stability as well in
terms of loss. Loss function values for PER approach do not have such rapid changes as they have with
the normal Experienced Replay. PER chooses the most prioritised experience from the whole buffer
and uses it in a particular timeframe. Since it is not random as in basic Experienced Replay approach,
the loss becomes more stable and is decreasing the whole way to the end of training process. In the
beginning of the training, it is already noticeable that PER has better development of loss function
values than experience replay.

13




